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1 

Combustión oí a hydrocarbon requires the previous evaporation and 

mixture with oxygen, In a combustión chamber oí a turoine combustión may 

take place in many diverse ways. 

If the hydrocarbon vapors íorm an almost homogeneous mixture with 

air beíore combustión, combustión may be eííected by a fíame laminar or 

turbulent according to the circumstances across the mixture. 

The propagation oí ílame s laminar as well as turbulent has been the 

subject oí intense studies in the last years, particularly because oí its great 

interest in aviation propulsión systems. The re exists an extensive bibliography 

in both the intrensic properties in the establishment oí such fíames in the rapid 

currents that obtain in combustión chambers oí turbinas and after burners. 

Typical examples oí the bibliography are given in reíerences (1) and (2) 

indicating theoretical and experimental studies oí laminar flamas oí hydrocarbons 

and reíerences (3) and (4) íor turbulent flamea and (5) and (6) on studies oí the 

problem oí estábilshing one or the other in rapid currents. In each one oí the 

reíerences íound in the bibliography are íound a complementary bibliography on 

these qtwfetions, knowledge oí which i s rudimentary because oí the complication 

oí the problem. The velocity oí propagation oí a laminar ílame across a mixture 

oí combustible vapors and air i s independent oí the pressure and i s oí the order 

oí a íew 
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centimeters per second. (1) That oí a turbulent fíame may be aeveral 

times higher but at the most o£ some meters per second. This presente 

grave needs for space in order to burn such mixtures, particularly if the 

limitations imposed by the mentioned phenomenon oí stabilization are taken 

into account and by those oí the thermal blockade. (7) 

When combustión is produced in a very intense turbulent soné the 

mixture between reactants and products makes the concept oí a fíame 

front disappear, a combustión almost homogeneous oí the mixture obtains. 

The ideal limit oí such type oí combustión corresponda to the so-called 

perfectly mixed homogeneous reactor 

studieé theoretically by Avery and Hart (8) and by DeZuboy (9) and whose 

practlcal realizaron was approximated in the spherical burner oí Longwell (10). 

The homogeneous combustión chamber determines the máximum energy that 

may be Uberated per unit volume in a combustión chamber. JLongwell 

in his spherical combustión chamber reached ratea oí the order oí 4 x 10° Kcal/ 

per hour at ambient pressure with a stoichiometric mixture compared with 

the 2 x 10 Kcal/m per hour which is characteristic oí combustión chambers 

oí industrial gas turbinas. 
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When the combustible penetratea in the liquid átate into the soné 

of combustión of the chamber, evaporaron, misdng of the vapora with the 

air and combustión are going on simultaneously atarting aome of the foilowing 

typea of combustión according to the circumatances. 

a. Propagation of a fíame of similar characteristics similar 

to the premixturea mentioned in the No. 1 across the cloud formed 

by the suspensión of smail dropleta of the combustible in the air. 

b. Formation of individual flamea around or in the wake of the drops. 

The first type of combustión i s produced when the sise of the drops 

is so small that they are able to evapórate in the heated zone of a premixed 

fíame. Thia occura with dropa with a díameter of the order of 5 microña 

or leas. Experimente made by Browning Krall (11) with clouda formed 

by drops of propane or kerosene with drop diameters leas than 1 micron 

indícate that the characteristics of such flamee are very aimilar to the 

prerrixed flamas of the aame fuel. For example, the velocity of the laminar 

fíame is süghtly less caused without doubt by the heat of vaporixation of 

the dropa. Theae flamea of carbón duat and other solid fuels present 

characteristics similar to the foregoing. One essential difference rests 

without doubt in the prepondurate influeene of the heat transmitted by 

radiation in the dust flamea which makes the velocity of fíame acroaa duat 

mixtures dependent not only on the air/fuel relation but aleo and very 

conaiderably by the si se of the particlea of combuatible and by the geometry 

of the fíame (12 to 14). The study of such flamea haa great practical intereat 
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because oí the possible employment of coal dust in the combustión chambars 

of industrial turbinas. 

The second type of combustión i s that which i s produced when the 

sise of the drop exceeds several microns and it is that which i s going to 

be considerad in the following with considerable detail from the theoretical 

point of view as well as experimental. 

3 

The combustión of a drop of combustible is a very complicated 

phenomena in which concurrently occur processes of heat transmission 

by redi ation and convection in the atmosphere that surrounds the drop and 

at the same time the evaporation of the drop, the diffusión and mixing of 

the vapors and gases and finaliy the ignition and chemical reaction all 

of which i s taking place in an environment which is not stationary. In 

•tudying the procesa the principal object of analysis consists of determining 

the conditions under which combustión may exist and the time required in 

burning a drop of a given sise, that i s to say, the Ufe duration. One or 

the other depends on the physical chemical properties of the combustible 

and the atmosphere around it and of the state of movement relative to both. 

S. S. Penner (15) in a aimplified dimane! onal atudy of the phenomenon 

enumerated 23 distinct dimensionless parameters. This constitutes an 

indi catión of the compli catión of the process. 
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Nevertheles8, in the moit «imple case of combustión oí an isolated 

drop in the atmosphere of a cavity in which ia formed a fíame 

of difusión aurroundlng the drop it i s possible to make a schematic modal 

of the phenomenon which repreaents the modal very approximataly to the 

real case and is susceptible to theoretical study. Such a modal is basad 

on the following two eonsiderations: 

a, That combustión i s effected in the vapor phaae and the denaity 

of the liquid i s much greater than the former for that reaaon combustión 

once initiated may be treated as a phenomon almost statiLonary. 

b. The mixture of oxygen and vapora ia effected by laminar diffuaion 

of reaction at the high temperatura that prevalía in the flama and which 

permita the elimination of the chemical kenetics applying the classical 

method of Burke and Schumann (16) to the fíame diffuaion that forms around 

the drop. With such a hypotheais and if moreover the influence of free 

convection due to the heating of the gases i s disregarded the model of 

combustión that appears in schematic form in Figure 1 is obtained. 

Surrounding the drop is the form of a 

fíame of very small thickness dia-

grammed by a spherical surface 

whose radius is several times largar 

than the radius of the drop. Toward 

the flama are diffueing the vapora of 

the combuatible from the interior 

and oxygen from the exterior. The 

Frente ¿e Ihmajéa^ 

Fi 0 . t 
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diffusión ia produced acroaa an atmosphere oí inert gaaea and producta. 

Theae in their turn diffuse from the fíame toward the exterior, The 

fíame auppliea the heat necessary for the evaporation oí the combustible. 

The concentration oí the vapore oí the combustible and oí oxygentn the 

fíame are practically nil because both are consumad almost instantaneously 

on arriving at the ñame because of its elevated temperatura. This model 

was proposed by Godsave (17). A theoretical study completing the process 

based on the model may be found in reíerence (18). 

Letting P signiíy the density oí the liquid combustible, d the 

instantaneous diameter oí the drop, m the mass of the combustible burned 

in unit time at each instant a simple calculation gives 

The fundamental result oí the analysis is that d2 i s a linear function oí the 

time t oí combustión of the íorm. 
¿» = i\ - Kt 

úc « df - Kt (2) 

in which K is a constant oí evaporation which depende only on the physical 

chemical characteristics oí the procesa, di the diameter oí the drop at the 

instant combustión is initiated and t the time measured starting from 

this instant. 

The previous result has been obtained from the hypothesis that 

the heat that the drop receives by racüation originates from the fíame or 

from the walls oí the combustión chamber is insignificant. 
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Caiculations by Godaave (17) and by Hottel and bis coilaborators (19) 

show that such heat i a small comparad to that which the drop receivea by 

convection, in all caaes o£ practical ¿interest. 

From the equations oí (1) and (2) there results 

m • 4 7TP Kd (3) m = 4 * pe Kd (1) 
c 

This shows that the masa burned per unit time is not proportional 

to the suríace oí the drop. 

This i s due to the approach oí the llame front to the suríace which 

hastens the evaporation. This attributerf emphasiaes the interest in good 

atomication. In efíect diminishing the sise oí the drops írom the jet atream 

hastens combustión not only because the available liquid suríace i s increased 

but also the combustión per unit suríace ia more rapid. 

5 

Numeroua experimental measurements have been made under 

conditions that tend to reproduce Figure 1. Three oí the techniques utilised 

with diverse methods are 

a. Combustión oí drops that íall íreely or are thrown through the 

atmosphere (19)* This method is appropriate to drop sises comparable 

to those which are obtained in a combustión chamber but the results appear 

to be masked by the iníluence oí the íorced convection, owning to the movement 

oí the drop to which reíerence has been made previously. 

b. Combustión oí drops suspended írom a fine filament oí silicon 

or quarts (17) with which are elimínated the inconvenience oí the íorced 
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convection but the dropa must be reiatively large (d^l mm) in order to 

elimínate the influence o£ the Ülament. 

c. The employment oí metallic apheres led by the combustible 

by various procedures (20). With this method are obtained constant 

diameters and a really stationary and eaay to control but must be used 

with very large diameters. 

All o£ the experimental results 

confirm the lineal iaw ol equation 2. 

Figure 2 shows «orne experimental 

results obtained in the combustión 

laboratory oí INTA or taken from 

reference (21). It may be verified 

moreover that the experimental 

valúes oí the constant of evapora­

ron coincide very closely with the 

theoretical valúes. This may be 

seen in Table 1 (18) in which they are 

compared for some typical fuels. 

TABLA 

K. 

Teórico 

0.86X1Ü-2 
1.00X10-2 
0.87X10-2 

cm'/seg. 

Combustible 

K. 

Teórico 

0.86X1Ü-2 
1.00X10-2 
0.87X10-2 

Exper. 

n-Heptano 
Benceno 
Tolueno 

K. 

Teórico 

0.86X1Ü-2 
1.00X10-2 
0.87X10-2 

0.97X10-2 
0.97X10-2 
0.66X10-2 
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Table 2 gives the valué* of K for a large variety of combustibles both 

simple and compound including the temperatures in which it was measured. 

TABLA II  

Combustible K. cmVseg. 

Alcohol metílico . . . . 1.60X10-2 
Alcohol etílico 0.99X10-2 
n-Heptano 1.16X10-2 
Isoctano 0.90X10-2 
Benceno. . . . . 1.00X10-2 
T r u e n o 0.91X10-2 
Cetano . 1.44X10-2 
Cvdoexano. . . . . 1.02X10-2 
Metilnaftaleno 1.04X10-2 
Nitrobcnceno 1.02X10-2 
Gasolina motor 1.10X10-2 
Keroseno 1.12X10-2 
Aceite Diesel . . 1.11X10-2 

Aceite pesado 
ÍP ,=0.918 gr'cm') . . . 1.05X10-

Accite pesado 
(P .=0.864 gr/cm*) . . . 0.93X10-2 

ToK 

1073 
973 
973 
973 
1000 
1000 
973 
973 
973 
973 
973 
97.3 
973 

968 

973 

The formula (2) gives the time of l i te t.. of a drop of inltially 

of diameter d¿ 

(4) 

In Figure 3 are given the 

Ufe span of drop» of diameters 

between 10 and 200 microns for 

some of the fuels given in Tables 1 

and 2. In the calculations the ex­

perimental valúes of the constants 

given in the se two tables ha ve 

been used. 

ito too 
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II the fuel evaporatea without combustión the lineal law 2 appliee 

but the valué of the constant oí evaporation is lesa, which prolonga the 

time of Ufe of the drop. At a temperature of the order of 1000'K the constant 

of evaporation without combustión 

is approximátely 1/2 that of evap­

oration with combustión. At 

lower temperaturea it is 

aeveral times leaa. In Figure 3 

have been included Unes for drop Uves that evapórate without combustión 

for typical fuels. These Unes have practical interest be cause it may occur 

that the drops may not be able to maintain a surrounding fíame in spite of 

the fact that the temperature of the atmosphere that surrounds them is 

higher than that required for combustión perhapa for lack of oxygen or 

because the drop i s moving sufficiently rapidly across the atmosphere. 

(See paragraph 14 following) 

When a drop of fuel penétrate» into an oxidisting atmosphere heated 

to a temperature to that required for ignition of the drop there exists a 

transition period before the initiaüon of combustión which ia composed of 

2 parts. First the drop is heated expanding itself until its surface reaches 

a temperature near that of ebollution. In this phase the evaporation is 

very amall but the diameter increase. When the temperature of the drop 

approsdmates the temperature of evollution intense evaporation is produced 

but without combustión, Both phases appear ciearly in the higher curves 

of Figure 2. The transitory effects increase the Ufe span of the drop by 
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a fraction that liea between 15% for iight fuela to 50% for more heavy fuela, 

at a temperatura of the order oí ÍGQQ'F. 

In compound and heavy íuele the formation of interior bubblea of 

vapor and cracking can maak the lineal law 2 giving place to curvea of 

d vet or irregular forro like that ehown in Figure 4 taken from reference 21, 

Nevertheleae the Ufe of a drop 

approxlmatea being proportioned 

to the aquare of ita diamate r and 

one may continué to apply the law 4 

in which K wiil be in thia caae an 

apparent conatant of evaporation 

for the drop. 

The valué» of Tablea 1 and 2 

ahow that the conatant of evapora­

ron variea relatively little between 

fuela particularly if the enormoua 

difference between the volatiUÜe» 

of the fuela ia conaidered. A» the 

quantitiea of air neceaaary for coro-
Fig. 4 

buation of theae fuela differ alao by amall quantitiea the reault ia that the 

eyetem of combustión ia particularly auitable to burn any claaa of fuel and 

for thia reaaon ia more adequate in industrial applicatión» in whioh economy 

playa an important role. 
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O i í Figure 5 (Reí. 21) shows the 

influence of temperatura of the a t -

mosphere that surrounds the drop 

on the constant of evaporation. The 

abrupt fall that is observed at temp­

eraturas higher than 1000a co r r e s -

ponds to the influence of disasso-

ciation when the temperature of 

the fíame i s in that soné will be 

above 3000-K. The influence of 

the ambient temperature on the 

valué of K in the soné of interest i s 

somewhat less than the influence of 

said temperature on the velocity of propagation of a premixed fíame. 

The valué of K increases from 15 to 20% for each 100*C risa in 

temperature. 

The volume V of air required by a drop of diameter d for combustión is 

V • 4/3TTd3v P c in wbich 

.010 

.005 

/ 

V / 

__ 
«X? IOCO HOO 1200 1300 

Temperatura del aire TaaCK) —~-

Flg. 5 

v is the weight of a ir per unit weight of fuel in a stoichiometric mixture 

°* *ke * i ' . Sinos the mass m burned in unit time and P a i s the 

is given by (3) the heat liberated per unit volume per unit time i s 
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q n 3q K P . iüí = .±±!í?.a- (5) 
V * 2 * (5) 

vd' 

in which q is the heating valué of the fuei per unit ol mase. This says 

that the heat liberated i s directly proportional to the density of the air 

and inversely proportional to the square of the drop diameter which again 

shown the great importance of good atomisation and the convenience of 

burning under pressure in order to basten combustión. 

Using typical valúes of this physical chemical constant there is 

8 3 

obtained from (5) burning rate of the order of 10 Kcal/m per hour when 

the temperatura of the air is some 1000*K for drope of 100 microns in 

diameter. This valué i s some 40 times less than that which may be obtained 

in a homogeneous ideal burner but it demonstrates the efttcacy of the 

system of small drops and i s some 50 times larger than the valué obtained 

in an industrial turbine. 

Theoretical resulta indícate that K as well as the relation between 

the radius of the fíame and of the drops are practicaliy independent of the 

pressure (22). There exista little experimental Information about the 

influence of pressure on the combustión of a drop. The most complete 

work about this point is that by Hall and Diederichen (23) who tested with 

drops suspended and pressures in the range of 1 to 20 atmoapherea 

ahowing that the constant of evaporation increased approximateiy as the 

1 /4 power of the pressure. This effect has been attributed to various 

causes (18) but especially to the influence of free convection that i s produced 

because of the heating of the gases around the drop. This combustión 

hastens the combustión because the fíame draws near the drop, as is 
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shown in the schematic of Figure 1. 

The quantative study of the poaaible influence of f ree conveetion 

is of intereat to judge the valué of the experimental resulta since if this 

influence is considerable the coincidence between theoretical and experimental 

valúes may be accidental. The question i s very complicated and its technical 

intereat limited for that reason we have limite d only indi cate d in the 

bibliography (19) and (24) advice that the only experimental Information 

concerne measurements in the absence of free conveetion (24) appears to 

indícate that its effect is considerable, 

Major technical interest i s found in the study of the influence oí 

forced conveetion because in all technical applications the drope are in 

movement. 

Fríossling (25) proposed a semiemperical formula to calcúlate the 

influence of forced conveetion in the evaporaron without combustión of a 

drop. Letting m be the mase evaporated per unit time under the influence 

of forced conveetion and m that which would be evaporated without conveetion 

The formula of Frossiing gives -HL = <1 4- 03 sc ". ff« <h). (6) 

,1 1 / 2 
a ( 1 + Q S S . R ^ ) expresión, Se = -JL-. y Re 

*» e p u Ce m - ~ ?DCP 

in this expréssion S„ «-JJL-— and R^ • P a v d 

r c PDC-, • ——«— 

and are respectively the Schmidt number and the Reynolds number of the 

phenomfenon. i s the coefficient of viscosity of the atmosphere that 

surrounds the drop, D the coefficient of diffusión between the vapora 

of the fuel and air. C spedrie heat at constant pressure Xét V * velocity 

of the drop with respect to the afesne atmosphere that surrounds it. 
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Easily it may be understood that (o) may alio be written in the form 

AI*2\ i 1/3 1/2 

"3SJ « K l • Kfl+O.SS. R,» ) (?) 

in which K is a constant oí evaporation with convection and 

K the corresponding constant without convection* Slnce K depends on 

the diameter oí the drop through Rc the results oí (7) i s that in this case 

the lineal law (2) does not obtain yet when the solutions oí (7) draw very 

near to it for normal valúes oí RA. 

It has been suggested that the rule (7) of Fróssling i s also applicable 

to the study oí the influence oí íor ce d convection in the combustión oí a 

drop when Sc and R0 are assigned these valúes corresponding to the 

temperaturas prevailing between the atmosphere that surrounds the drop 

and the fíame. This cannot be put down until the presentaron oí suííicient 

experimental Information in order to decide the question but the iníormation 

existing (27) suggests the validity oí this rule or other similar ones, such 

as proposed by Spalding (28) and by Ingebo (29) • 

In INTA a program oí theoretical and experimental work on this 
partially 

question has been íinished. (30) (31) (This program has beenXBJBBItoidaei» 
subsidised by the European Office ARDC. USAF through its contract 

No. A.F.61 514-734C with INTA). 
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Figure 6 taken írom Reí. 26 

reproduce* «orne oí the resulta ob-

tained with toluene. In it the traces 

oí the curve that correapond to the 

rule oí Froasling hav* been represented, 

The meaaurementa made could not be 

extended Mgher than the soné explored 

becauae oí the extinction oí the fíame, 

which will be shown later. Figure 6 

showa that the íorced convection ia 

aomewhat eííective in haatening the 

combustión oí a drop but i í the phen-

omena oí extinction is taken into con-

sideration the time oí Ufe oí a drop may not be reduced probably more 

than 30% to 40% aa a máximum, 

13 

A probiem oí great practical intereat in the combustión oí a drop 

i a the determinan on oí the dietance oí travel or ita penetraron and oí ita 

Ufe time when it movea acroaa an atmoaphere oí definit* characteriatica 

with a certain initial velocity Vj and it evaporatea with or without 

combustión along ita patfa. Thesüác diíñculty oí the probiem reata on the 

íact the velocity varíes becauae oí ita aerodynamic reaifetance. Problema 

oí this type have been atudied theoretically and experimentally by othera 
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among thom are Miesse (32) (33) aad El Wakil and collaborators (34) 

(In the reference indicated may be found aa abundant bibUography on the 

question). Takiag as a base these studies aad supposiag that the formula 

of FrossUng i s applicable the reduction ia Ufe time and the peaetration 

has beea calcúlated for a drop that moveí uader the conditioas indicated. 

(The authors take pleasure ia expressing gratitude to Sr, Da Riva for his 

valued cooperaron in making the calculations) The coefücieat of resistance 

of the drop i s inverseiy proportionai to the Reynolds number of the movement 

for the interval of Reynolds number s of practical interest. In this case 

equation 7 may be integrated in expiicit form and starting this solution 

the Ufe span of the drop may be calculated. The fundamental result is 

coadeased ia Figure 7. In this ¿r 

figure St i s the reduction of the 

Ufe span of the drop taJdng as 

unity the Ufe span in a quiet 

atmosphere, <X and B are two 

parameters defined by the fol-

lowing expressions. 

o< ^ . s ^ c %R& 
í * -

¡ Ó- ? 

in which R e l i s the initial Reynolds 

number and the rest of the para­

meters have previously beea 

define d. 

a = 0.3 Se *<* Re, ' '•• 

^ 9 
K ?c 

(8) 

(9) 
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Figure 7 shows that the fundamental variable in the Ufe ia the 

páramete roe while the influence oí B ia very small. The Schmidt number 

varias little from one íuel to another and haa valué a oí about 2. For thia 

reaaon the important variable i a the Reynolda number. 

14 

The foregoing concluaiona are valid aa haa been aaid i í evaporation 

i a produced with or without combuation. 

Ií the evaporation ia without combuation the Ufe epan ia increaaed 

doubUng itaelí íor temperaturee oí the order oí 1000'K. Thia problem 

is intereating íor i í the velocity exceeda a certain valué the fíame íront ia 

extinguished. Then the combustión oí the drop takea place in the wake 

which reduces conaiderably the valué oí the constant oí evaporation aa ia 

shown in Fig 7, or it may be totally extiagulahed ia which caae the drop ia 

evaporated without combuation. Spalcüng (28) haa pointed out that the 

oí the movement and the diameter oí the drop. Fig 6 gives aleo auch an 

example, aome experimental valúes that we have obtained in thia relation. 

The measurements were made at or near ambient temperatura and the 
v 

indications are that the valué oí ¿ correaponding to extinction increaaea 

conaiderably with the temperatura. 

íor drop whoae diameters are oí the order oí 100 microns or leaa extinction 

ia produced at velocitiea oí aome centimeters per aecond. Thia aignifiea 

that mmm%wMWámú evaporation la producad without combuation in moat eaaea 

oí practical intereat, the vapora burning later on rnixtag with air in one oí 

the modea indicated at the beginning. Nevertheleaa the problem ia not 

auíficiently clear. 
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Another important question i s the iníluence oí the proadmity oí other 

drops on the velocity oí combustión oí each. There exist some preliminary 

experimental studies on this question (36) (3?) and (38) wtách demónstrate 

that the interaction is small unless the drops are very cióse to each other 

and are very numerous. Flg 8 shows the results oí two cases oí interaction 
Dos gohs uno alhao <*> /a oía _.&»*°T?-*A*.e..*Z£Be 

Una fila en la < filamento ¡ndinoabL'. £ * ^ . / £ _ £ * S É ° < 
es/e/a délooho 1 rihmen&wfca/J&élP.i^aíffiíb (37) and (38) 
D/jlr/ói/c/óo cúbica tkochüQofa&yuna enelepn/ro.. 
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2-Arista del cubo cm. 

10 

The preceding analysis íurnishes the baslc iníormation to attempt a 

study oí major practical interest, that oí combustión oí a jet oí íuel. It 

turas out to be dtfficult, nevertheless, to know how such iníormation ought 

to be used in the attempt such study and logically the answer ought to 

depend on the particular characteristics oí each burner, the conüguration 

oí the cúrrente in the primary soné oí the chamber which vary widely írom 

one to the other. 
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During the last yeara the re has been graat activity in accumulating 

Information principally experimental about the combustión oí streams of 

fuel. Frequently such Information has relerred only to partial aspects of 

the problem, most easy to study like the statistical characteristics of the 

streams (39) (49 their dynamics (41) (42) and (43) the diffusion and mixture 

of the drops with the atmosphere that surrounds them (44) and (45) its 

evaporation without combustión (41) (42) and (46) and finally the combustión 

(47) (48) (49) (50) (51) • • • immHtéwtuum* 

Some of such experimente have been made with ideal streams in which 

all the drops are of the same s ise . 

The measurements made have referred generally to the groes charac­

teristics of the stream, although in some cases the be ha vi o r of individual 

drops has been observed. Such observations have shown that to attempt 

to generalice the results obtained with isolated drops with those of streams 

difficulties appear concerning the valúes that should be assigned to char-

acteristic parameters which are not well determinad. 

Various works of review principally directed toward the burner 

for reaction motors were presented in the two meetings for A. C. A. R. D. 

in 1954 (52) (53) (54) 

The methods that have been followed for the study of combustión of 

streams may be put in three groups. 

a. Methods basad on the extensión of the results obtained in 

etudying the combustión of isolated drops. The take off point for 

such studies i s established in the theoretical work of Probert (47). 
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Gravaa and Garataln (53) havc calculated lome axamplaa of tha applicatión 

oí thia method to determine tha efficiency of combustión and tha influence 

of páramete re euch aa tha valúa of the conatant of evaporaron or the con-

centration of oxygen. Another example may ba found in Reí (51). Tha 

comparieon between tha experimental raaulta and thoee redicted by thia 

method ara not conclualva maldng it ne ce star y to continué the theoretical 

work as well aa experimental In thia direction. 

b. Extensión of methoda employed in the study of turbulent flamee, 

diffusión o£ gases, of heterogenfeous combustión of jet streams. 

An example of this method ia found in Reí (50). The problem consista 

of determining the geometrical location of the points in which fuel and 

oxygen are mixed in stoichiometric proportions. 

c. Finally methoda baaed on the study of the influence of some 

characteriotic parametera of the atream and of the atmosphere in 

which it burns, in the characteristics of the combustión and the 

efficiency of combustión. Examples of the appli catión of this method 

are found in Reí (52) and (53). Thus when emperical Information ia 

secured by thia method of great valué nevertheleaa the resulte have 

limitad application be cause they depend considerably on the configuration 

utiliaed. For thia reason it would be advisable to accumúlate pre-

liminary information concerning the influence of some fundamental 

parameters that may be variad in a syatematic way in aimple and 

well defined configuration aa haa been done for example by Woodward (57). 
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We have dona (57) some theoretical work on tbe applicatión of 

Frobert's method in wbich baa been considerad both tba stationary 

functiong región and tranaitory that corresponda to tbe beginning of 

combustión of tbe atreaxn tbe altérnate correaponding to periodic combustión. 

In thia work it baa been auppoeed that all of tbe dropa bave tbe aaxne 

conatant of evaporation. How ligitimate thia hypotheaia ia and tbe valué 

that ougbt to be aaaigned to thia conatant if it ia valid dependa on the 

reaulta of experimental meaaurementa now in preparation. In tbeae the 

sise diatribution function of dropa of Mugele-Evans has been uaed and 

conaidered preferable to that of Roain-Rammler and Nukiyama-Tanasawa 

becauae it permitted a prediction with cloae approximation and moreover 

limited the máximum sise of tbe dropa. Let F be tbe fraction of volume 

of tbe atream formad by dropa whoae díameter la leaa than d. Tbe formula 

of Mugele-E vane givea for F the following expreaaion 

r* - L I ; * í / £ /* X~A^ > 2 L dmái~á J 

In thia expreaaion $ ia the integral error d n i a x ia the máximum diameter 

ot O . drop. £ « d <f>.r. «wo c h . ~ c t . r i . t t e , - r . m . t . r . of th. dt.trlbution. 

Fig 9 givea aome distributione correaponding to typical valué a of tbeae 

paramttere. In tbis figure it ia aeen that increaaing & increaaea the 

uniformity of the atream wbile increaaing $diminiahea the mean sise 

of the drope. 

http://ch.~ct.ri.tte
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If G is the volume oí íuel injected in the burner per unit tizne and 

g the voluzne oí the drope that exiet in the chaznber* g is expressed as 

a function oí G by means oí the formula 

. ,^£, , , ., , . QJ^-J 

J Vrr „ r <10> 

in which I is given by the expression 

C ' C '~* •——T~~ " é ki 

4v 00 

ty is the tizne oí combustión oí the drops oí máximum cüameter in the 

strearn. 

The znagnitude oí 10 i s oí interest be cause the intensity oí combustión 

oí the burner should be inversely proportional to it. 

As may be seen to increase £. that i s to increase the uniformity 

oí the stream diminish the volume oí íuel in the chamber, In consequence 

it is oí advantage to opérate with streams oí the highest possible uniformity 

in order to diminish the volume oí the burner. 

Combustión distorts the distribution oí the drops in sise conserving 

nslirally the largest s ise . Itg 10 shows the íunctiona oí distribution in 

the fíame corresponding to the three cases calculated. 
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For comparieon the re has 

been included in thie figure the 

corresponding distribution in the 

•tream. In Table m have been 

included the díamete re frem 

Sauter corresponding to the 

•tream and the fíame. 
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